
                                     

 1    

 

ARTIFICIAL INTELLIGENCE APPROACH TO PREDICTING 

GEODETIC POINT VELOCITY USING GNSS CAMPAIGN DATA              
(A CASE STUDY OF GHANA)  

Paper No: 12376 

 

Christian Kartey QUARCOO, Yao Yevenyo ZIGGAH (PhD.) and Bernard KUMI-

BOATENG (Prof.), Ghana 
 

Keywords: Geodetic point velocity 1, seismicity 2, crustal motion 3, RBFNN GRNN GMDH 

BPNN 4, artificial intelligence 5, etc. 

 

 

SUMMARY  

The frequent occurrence of disasters worldwide has incited the need for rigorous 

experimentation with techniques that would help mitigate risk, as these disasters result in 

countless loss of lives and properties, thus, increasing the economic expenditure of nations. 

Therefore the forecasting of a precise crustal movement is of great significant, not only to the 

geoscience community but the world at large. One way to understand crustal movement 

geodetically is by using Geodetic Point Velocity. The object of this research is to analyze the 

predictive capability of four Artificial Neural Network (ANN) models in predicting GPV in 

Ghana. Based on the observations of the 8 GNSS CORS in the southern part of Ghana, the 

velocity data derived was divided into two; 80% for training and 20% for testing and 

validation. First, the BPNN model was developed with 3 inputs, i.e. Vx, Vy and Vz, 50 hidden 

layers with their synaptic weights and 1 output layer. Afterwards, the remaining three models, 

GRNN, RBFNN and GMDH were trained and tested with the same dataset. Geocentric 

coordinates Xm, Ym and Zm with their respective Geodetic Point Velocities were used as 

inputs (VX, VY, VZ) for all the models. The performances of the models were assessed using 

root mean square error, mean absolute error, mean squared error and coefficient of 

determination. Based on the results obtained, it was found out that 3 out of the 4 proposed AI 

techniques were able to produce sound GPV predictions. However, the GMDH was suitable 

as it was able to predict the GPV precisely. This was selected based on the statistical 

approach for the evaluation of the prediction of the models. For instance, the other models 

could produce comparable results as their R2 values were marginally different from that of 

the GMDH model which ranges between of 0.002 to 0.298. 
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1. INTRODUCTION 

It is established that society faces a continuum of everyday risks to major disasters. Hence, it 

is a great concern that severe natural disasters (e.g., earthquakes, floods, and tsunamis) are 

generally infrequent but significantly impact society. For example, destructive earthquakes 

and other seismic risks greatly impacted various countries regarding loss of lives, economic 

losses and downtimes. (Songsore, 2006). 

 

The practical application of science and engineering principles to developed economies 

through precise predictions of seismic activities has reduced the risk faced by earthquake-

threatened cities of the developed world through Artificial Intelligence (AI). However, less 

can be said about developing countries, for instance, Ghana. It is worth noting that rapid 

advancements in AI have far-reaching ramifications for engineering practitioners and society 

as a whole.  

 

AI has been applied in many engineering fields as well as geodesy for the determination and 

prediction of geo-seismic activities of the earth (Reiter et al., 2010).  

Recently, the use of AI in geodesy has been widely adopted as an alternative to the 

conventional methods of solving most geodetic problems. Notable areas of application 

include coordinate transformation (Ziggah et al., 2012; Ziggah et al., 2019; Ziggah et al., 

2020, Gullu, 2010; Konakoğlu and Gökalp, 2016; ; Cakir and Konakoglu, 2019), geoid 

determination (Kavzoglu and Saka, 2005; Veronez, 2011; Erol and Erol, 2013; Cakir and 

Yilmaz, 2014), earth orientation parameter determination (Schuh, 2002; Wang, 2008; Liao, 

2012), modelling ionospheric TEC (Cander, 1998; Maruyama, 2008; Akhoondzadeh, 2014; 

Inyurt and Sekertekin, 2019), gravity anomaly prediction (Tierra and De Freitas, 2005; 

Pereira, 2012), noise reduction in GNSS signals (Mosavi, 2006; Kaloop and Hu, 2015) and 

crustal movement (Laksari et al.,2012; Yilmaz and Gulu, 2014; Yilmaz, 2013; Argus, 2012; 

Razin and Mohammedzadeh, 2015; Tierra, 2016). It is important to note that this study is 

focused on crustal movement. 

 

It is established that tidal forces from external bodies cause crustal movement within the 

earth. Hence, there is an increasing demand for precision and accuracy in crustal movement 

prediction for geodetic and survey measurements. Therefore, highly potent mathematical 

methods such as AI are needed to model and predict crustal movement. In effect, the impact 

of crustal movement on the earth’s surface could be ascertained and proper mitigation 

measures be applied (Agnew, 2007). One way to understand the crustal movement 

geodetically is by using geodetic point velocity.  

 

Therefore, estimating accurate geodetic point velocity is significant to geoscientific-based 

communities. Several researchers have investigated the velocity field determination in crustal 

movement (e.g., Demir and Acikgoz, 2000; Nocquet and Calais 2003; Hefty, 2008; Novotny 

and Kostelecky, 2008). In addition, the velocity information can be used to study plate 

boundary dynamics, seismic site characterization and deformation kinematics (e.g., 

McClusky, 2000; Hackl et al., 2009; Kanli, 2009; Perez-Pena, 2010; and Pinna, 2011). This 

study adopts an AI approach to develop a computational tool for predicting crustal 

movement. 
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1.1 Problem Statement 

By the end of the 20th century, the primary data sources for understanding tectonic 

deformation were field fault surveys, satellite images and seismic moment tensor inversions 

(Avouac and Tapponnier, 1993; Ding, 1986). With the rapid development of modern space 

geodesy, geophysical phenomena such as tectonic movement, fault zones, earthquakes, 

landslides, volcanoes and other deformation activities are frequently determined using 

GPS/GNSS campaigns. Repeated observations from the GPS/GNSS provide velocity 

information with high precision and high spatiotemporal resolution (Wonnacott et al., 2011), 

hence resulting in the varying positioning of geodetic points over time evolution (Duman and 

Dogan, 2018).  

 

GPS/GNSS derived velocity field has proven to be an effective source of information for 

determining the displacement of points in horizontal and vertical space. Its applications also 

span through but are not limited to the: determination of plate boundaries and their 

movements, displacement of geodetic points, crustal motion, geo-kinematic model, the 

magnitude of earthquakes, velocity of mass center and the surface of the earth, rotational rate 

and spatial density variations of the earth (Haukson, 2001; Hofman et al., 2006; Heildelberg, 

2013 and Younis, 2019).  

 

There has been a remarkable increase in modeling of geodetic point velocity that has been 

done over the years, particularly by scholars with the ability to predict the earth’s seismicity 

and lithology over varying plates. Some of the notable empirical methods applied to model 

geodetic displacement and or deformation include Kriging, vector displacement, least squares 

collocation, linear propagation of errors, Quasi-Newton model, NUVEL model, triangulation 

method, dislocation model, Ferrell’s Green functions and VEMOS (SIRGAS velocity model) 

(Tierra, 2016; Rinlin et al., 2014; Zhou et al., 2010; Rizos et al., 2004; Liu et al., 2011; Li et 

al., 2015; Shen, 2004; Bock and Melgar, 2015 and Kahle et al., 2006). However, these 

mentioned methods tend to be laborious due to the data acquisition method, length of 

observation and the computational challenges it presents. It also poses computationally 

intense calculations with sparse matrixes and is not easily scalable to global (Blewitt et al., 

2013). For example, the vector displacement model describes velocity in 2/3-dimension axes 

in a pre-defined coordinate system and computes the displacement of points in 3 dimensions. 

Therefore, if there is a change in position, the velocities in X, Y and Z (Vx, Vy and Vz), 

which are functions of time (t), become a vector algebra and not scalar, hence presents a 

complex situation to handle when performing manual computation. 

 

Currently, AI techniques and Global Navigation Satellite System (GNSS) Continuously 

Operating Reference Stations (CORS) data have been coupled for determining and 

monitoring crustal motion and are perhaps one of the most evident. For example, Yilmaz and 

Gullu (2011) evaluated the geodetic point velocities of five (5) stations in Turkey using Back 

propagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN) and 

Kriging. It turned out that the BPNN point velocity estimation was better than the RBFNN 

and Kriging estimations in all geodetic networks. Similarly, Tierra (2016) proposed a strategy 
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to interpolate the geodetic point velocities using RBFNN and the empirical VEMOS09 

model. The results demonstrated that RBFNN could interpolate better than the traditional 

VEMOS09 model. These mentioned studies have shown the capabilities of AI methods. 

 

Although AI methods are generally more robust than traditional statistical regression 

methods, each method has limitations based on how much noise a model can tolerate in data. 

Furthermore, a specific AI method may be effective only for a particular task, and once the 

object of focus changes, prediction performance may intensely reduce (Li et al., 2019; Du et 

al., 2019).  

It is established that the earth’s plate moves at an average 25mm/year rate, however, no 

research has shown the share of local rates in the global average. Therefore, this research 

applied four AI methods: BPNN, RBFNN, Generalized Regression Neural Network (GRNN) 

and Group Method of Data Handling (GMDH) to predict local crustal movement within the 

southern part of Ghana. The key is to select the optimal AI method with higher 

generalizability that can correctly manage the non-linearity and high parallelism traits 

displayed by the varying velocity fields of the earth. 
 

 

1.2 Study Area  

The study area is Ghana; a West African country located between latitudes 4° 30´ N and 11° 

00N and longitudes 3° W and 1° E. It is bordered on the North by Burkina Faso, Ivory Coast 

to the West, Togo to the East and The Gulf of Guinea of the Atlantic Ocean lies on the 

southern part of the country, forming a coastline of about 550 km long. Ghana covers a total 

land area of about 239,000km2. Ghana’s Geodetic Survey started as far back as June 1904 by 

the Governor of the then Gold Coast, Gordon Guggisberg, who made observation for latitude 

from a pillar in Accra with a zenith telescope, to 15 stars giving the final probable error of 

0.360 2009).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Study Area Showing the Six Selected Regions of Ghana. 
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Ghana’s framework diagram of Geodetic Network which is a blend of triangulation, traverses 

and precise levels, is covered with triangulation points with baselines of up to a maximum of 

about 55 miles and is controlled by three (3) measured bases; one base near Krobo Odumase 

in the Eastern Region, the second one is at Obuasi in Ashanti Region and a third at Laura in 

the Brong Ahafo Region (Poku-Gyamfi, 2009). The triangulation was mainly in the 

mountainous south, up to latitude 8º 20’ N and parts of the Volta Basin; the northern regions 

and the coastal lowlands were covered with traverses. These were supplemented with 

secondary traverses and primary levels. Primary traverses are found along the coastal belt 

with the exception of less than 100 km stretch between Accra and Apam in the Central 

Region of Ghana which has triangulation points. This network was published by the Survey 

Department in 1970, and is what has been used to provide controls for mapping in the 

country. 

The above description gives the researcher the advantage to undertake the research in Ghana, 

hence the study seeks to estimate and predict local crust movement for southern sector of 

Ghana.  

 1.3 Theoretical Framework 

Konakoglu, (2020) on Prediction of geodetic point velocity using MLPNN, GRNN, and 

RBFNN models: a comparative study by using first the multi-layer perceptron neural network 

(MLPNN) model with two hidden layers and generalized regression neural network (GRNN) 

model was then applied for the first time. Afterwards, the radial basis function neural network 

(RBFNN) model was trained and tested with the same data. Latitude ( 𝜑) and longitude (λ) 

were utilized as inputs and the geodetic point velocities (VX, VY, VZ) as outputs to the 

MLPNN, GRNN, and RBFNN models. The performances of all ANN models were evaluated 

using root mean square error (RMSE), mean absolute error (MAE), and coefficient of 

determination (R2). The first investigation demonstrated that it was possible to predict the 

geodetic point velocities by using all the components as output parameters simultaneously. 

The other result is that all ANN models were able to predict the geodetic point velocity with 

satisfactory accuracy; however, the GRNN model provided better accuracy than the MLPNN 

and RBFNN models.  
 

 

2. RESOURCES AND DATA USED  
 

2.1 GNSS Data Description  

Global Navigation Satellite System (GNSS) campaign data were obtained from the Eight (8) 

Continues Operation Reference Stations (CORS) established and controlled by the Licensed 

Surveyors Association of Ghana (LISAG).  

It was established between the years of 2017 and 2019. In other words, the 8 CORS were not 

established the same year but all eight (8) became fully operational in January, 2019. 

The GNSS receivers installed are the Leica GRX1200 series GNSS receivers with AS10 

antennas. 

The CORS is currently operating in the southern part of Ghana, i.e. Accra-Spintex, Akim-

Oda, Winneba, Tarkwa, Koforidua, Tarkoradi, Kumasi and Ho as listed in the table below. 
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The data were obtained in Receiver Network Exchange (RINEX 3.0) Format with a 

mast/cutoff angle 13o and of 30 seconds recording rate for 24hour session daily spanning 3 

years which supersedes the minimum time interval (i.e. 1 year) one can analyze deformation 

rate using GNSS data. 

 

Table 1.  Stations from which GNSS data was used. 

Stat. Lat.(N) Lon. (W) Alt.(m) 

LSA1 5°38'01.254" 0°05'15.516" 75.57 

LSA2 6°41'16.602" 1°37'30.818" 309.87 

LSA3 5°17'51.709" 2°00'00.156" 108.27 

LSA4 6°06'33.359" 0°18' 8.364" 222.38 

LSA5 4°55'31.741" 1°46'26.643" 43.62 

LSA6 5°21'38.166" 0°37'59.504" 44.90 

LSA7 5°55'34.325" 0°59'11.021" 164.54 

LSA8 6°36'33.322" 0°27'37.320" 230.49 
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Figure 2. Map of the study area showing the network of the CORS 

 

2.1.1 GNSS Data and post-processing 

The Trimble Business Centre (TBC), developed by Trimble Geospatial was used to process 

the GNSS observation data. 

In order to resolve the ambiguities of the baselines among the networks no station was 

assigned as Reference Station for the network to obtain the natural coordinates of the stations.  

Due to the size of data and the number of observation files the stations were processed on 

yearly basis to avoid excessive pressure on the processing software.  

Since the program is based on relative positioning, the daily set of baselines were formed in a 

network adjustment involving all station for each day for the 3year period. 
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The datum chosen was WGS1984 with geographic cartesian coordinates Nm, Em and Zm 

and the tropospheric model used in the TBC processing was the Saastomoinen model since it 

is professed as the best model in GNSS signal processing for multi-frequency GNSS 

observations.  

In all, there were 1070 station observations processed for the 8 stations and their respective 

coordinates derived during the study period. 
 

2.2 Velocity data processing 

 

2.2.1 Velocity data processing using GAMIT/GLOBK 

 

GAMIT/GLOBK is a Linux-based operating system propriety software developed by 

Massachusetts Institute of Technology (MIT). It is scientific software used to process the 

GNSS data for geophysical analysis. 

The "globk" refer loosely to the ensemble of programs collected in the ("Kalman filter") 

directory of the software distribution.  

Globk is a Kalman filter whose primary purpose is to combine solutions from the processing 

of primary data from space-geodetic or terrestrial observations.  

The Kalman filtering model is given as:’ 

 

 𝑋̂𝐾 = 𝐾𝑘 . 𝑍𝑘 + (1 − 𝐾𝑘) . 𝑋̂𝑘−1                                                                                                       (1)                  

Where k's (superscripts) are states, k=1 means 1ms, k=2 means 2ms.  

𝑋̂𝐾 is the estimate of the signal x. 

𝑍𝑘  is the measurement value. 

𝐾𝑘 is called "Kalman Gain."  

and  𝑋̂𝑘−1 is the estimate of the signal on the previous state.  

 

2.3 Artificial Intelligence Techniques 
 

This study applied four (4) Artificial Intelligence (AI) techniques to predict and evaluate the 

best model for Geodetic Point velocities. The AI techniques considered are the 

Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network 

(RBFNN), Generalized Regression Neural Network (GRNN) and Group Method of Data 

Handling (GMDH).  
 

2.3.1 Model Prediction Processes 

 

The aim of the ANN was to find a solution to generalize a multidimensional input and output 

mapping challenges so that it does not predict beyond limits of the training data. 
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Pruning was done to allow for better performance of the models by taking away the outliers 

and noisy data, especially the white noises. 

In all 1070 datasets were actualized for the eight CORS observed in weekly manner.  

The dataset was divided into two (2) subsets: (i) for training and (ii) for testing which was not 

presented to the ANN during the training.  

The training dataset was extensive and comprehensive and was representative enough for all 

possible variations on which the models were tested. 

The models were able to determine the optimum value of the velocity rate for the geodetic 

points under study with a specific number of inputs layers and neurons for the processing.  

All the models development based on these aforementioned techniques were carried out using 

MATLAB program.  
 

2.3.2 Backpropagation neural network  

 

The Backpropagation Neural Network (BPNN) is one of the widely used neural networks for 

prediction purposes. It has been widely used for the prediction of seismic activities such as 

earthquakes, tremors, tectonic movements, etc. Neural networks are named after simple 

processing units in the brain called neurons. (Amnieh et al., 2010; Saadat et al. 2014; 

Sawmliana et al., 2007; Monjezi et al., 2010b, Khandelwal et al., 2011). The BPNN is a feed 

forward neural network with input, hidden and output layer and each layer consist of neurons 

that are connected to neurons in the previous and next layers by connection weights (𝑤𝑖𝑗 ) as 

shown below in Figure 4.1.  

BPNN is designed to accommodate multiple hidden layers. Within the layers, the input layer 

receives an external input vector associated with individual weights with a constant bias term. 

The weighted inputs are sent to the hidden layer. Inputs to each neuron in the hidden layer are 

transformed by a mathematical nonlinear activation function. Hyperbolic tangent sigmoid or 

logarithmic sigmoid is preferably used as the activation function (Dorofki et al., 2012).  

 

In this study three (3) inputs were done i.e. Vx, Vy and Vz, 50 hidden layers with their 

synaptic weights and 1 output layer. 

The output from the hidden layer 𝑌𝑖, Equation (1) is then fed as input to the output layer. In 

the output layer, the input – output transformation is done by linear activation function to 

produce a final network output, Equation (2). 

  

𝑌𝑖 = 𝑓 (∑(𝑤𝑖𝑗 𝑋𝑗

𝑚

𝑖=1

+ 𝑏𝑖)) 

 

where 𝑤𝑖𝑗  is the weight connecting the input layer to the hidden layer 𝑏𝑖, is the bias term and 

denotes the transfer function used in the hidden layer f (). 

ŷ=𝑌𝑖 

 

 

 

 

                                                                                            (2) 
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                                    Figure 3. BPNN Architecture 

The selection of a suitable training method, transfer function, number of hidden layers, and 

number of neurons in the hidden layers is the most important step in creating a BPNN 

(Ziggah et al., 2016). As a universal approximator of any complicated issue, it has been 

demonstrated that a BPNN with one hidden layer is adequate (Hornik et al., 1989; Ziggah et 

al., 2016). As a result, this research only employed one hidden layer. 

The hyperbolic tangent was employed in this study as the transfer function for the hidden 

layer of the BPNN model, while the linear transfer function was used for the output layer. 

Levenberg-Marquardt (Hagan et al., 1996), Bayesian regularization (Foresee and Hagan, 

1997), and the scaled conjugate gradient (Miller, 1993) were taken into account for the 

backpropagation training techniques. Based on an experimental procedure, the ideal number 

of hidden neurons was chosen for each of the training functions. In other words, for each 

training function, the number of hidden neurons that produced the highest correlation 

coefficient and the lowest mean squared error (MSE) for both the training and test data sets 

was chosen as the optimal number. The outcome of each training function was then compared 

with the architecture that was chosen. 

The maximum number of iterations (number of epochs) is often set rather large since it is 

impossible to predict how many iterations will be needed until training is terminated (Hagan 

et al., 1996). Training is more reliable when the learning rate is modest. The training may not 

converge or even diverge if the learning rate is excessive. In some circumstances, the weight 

fluctuations may be so significant that the optimizer exceeds the minimum and exacerbates 

the loss (Surmenok, 2017). A large momentum coefficient can aid in accelerating the 

network's convergence rate. However, if the momentum coefficient is set too high, there is a 

chance that it will exceed the minimum, which might make the network unstable.  

In addition to slowing network training, a momentum coefficient that is too low cannot 

dependably avoid local minima (Baughman and Liu, 2014). As a result, for prediction 

modeling in this study, 5000 epochs for the network that was trained, with a learning rate of 

0.03, the minimum performance gradient to be 0.0000001, and a momentum coefficient of 

0.7. Also for the network performance function evaluation the Mean Squared Error was used. 

 

2.1.3 Radial basis function neural network 

 

A feed-forward neural network with three layers—one input layer, one hidden layer, and an 

output layer—is known as a radial basis function neural network (RBFNN). Figure 4.2 shows 
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an example of a common RBFNN architecture with an input vector, Xi(X1, X2, X3,...,Xm), 

radial basis functions, weights, and output.  

Without using weight connections, the input layer transmits inputs from the surrounding 

environment to the concealed layer. A radial basis function, which serves as the hidden 

layer's component for non-linear processing, is present in each neuron. Radial basis functions 

come in a variety of shapes and sizes (Shin and Park, 2000).  

However, the Gaussian function (Singla et al., 2007), which is the radial basis function 

employed in this work, is the most popular. Only a small input space region where the 

Gaussian is centered affects how the Gaussian function behaves (Poulos et al., 2010). After 

that, each neuron calculates the Euclidean distance between each input item and the Gaussian 

function's center.   

To implement the RBFNN effectively, appropriate centers for the Gaussian function must be 

found. 

Two parameters, namely the center and width parameters, define the Gaussian function. 

The Gaussian function is then updated with the obtained Euclidean norm to provide the 

results indicated in Equation (3). 

 

𝑛𝑒𝑡𝑗 = 𝑒𝑥𝑝 (−
‖𝑋𝑖− 𝑐𝑗‖

2

2𝜎𝑗
2 )                                                                                                            (3) 

Where ‖𝑋𝑖 −  𝑐𝑗‖is the computed Euclidean distance between Xi and cj. The input to the 

output layer is the weighted sum of the outputs of the hidden neurons. This is then processed 

by a linear function in the output layer to produce the final output, ˆk y of the RBFNN as 

expressed in Equation (4).   

 

𝑦̂𝐾 = 𝑏0 + ∑ 𝑤𝑗𝑘𝑛𝑒𝑡𝑗

𝑟

𝑗=1

 

where wjk is the connection weight between the hidden layer and the output layer, b0 is the 

bias term and r denote the number of hidden neurons. 

The centres, width parameters and a set of weights are adjusted during the training process of 

RBFNN. This is done with objective function of minimizing the mean square error 

Equation (5) between the desired output dk, and the predicted output, Yk. 

𝑀𝑖𝑛 (𝑀𝑆𝐸) =
1

𝑁
+ ∑(𝑑𝑘 − 𝑦̂𝑘)2

𝑁

𝑘=1

 

where N is the number of observations. 

 

        

 

                                                                                                       (4) 

(5) 
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                                            Figure 4. RBFNN Architecture 

The RBFNN model was trained using the gradient descent learning algorithm in which the 

weights are adapted in part to the deviation between the predicted and target outputs. The 

adjustable parameters that affect the training of the RBFNN are the width parameter and the 

maximum number of neurons in the hidden layer. Width parameter values of 0.1 to 50 with a 

step size of 1 were investigated for both ground vibration and air overpressure models. The 

maximum numbers of neurons ranging from 1 to 40 were also investigated with an optimum 

spread constant of 12. In choosing the optimum RBFNN architecture, there was a bit of 

iterations for the width value and the maximum number of neurons in the hidden layer that 

gave the least MSE and largest correlation coefficient in both training and testing data set was 

selected. 
 

2.3.4 Generalized regression neural network  

 

The input layer, pattern layer, summation layer, and output layer make up the one pass 

learning network known as the Generalized Regression Neural Network (GRNN) (Figure 

4.3). A feedforward connection is used to connect these levels. Information for input is 

received by the input layer and sent to the pattern layer. Euclidean distances between each 

input and each pattern that has been saved are determined at the pattern layer. Then, a 

nonlinear activation function receives these estimated distances as input. The output is then 

delivered to the summing layer. The S-summation neuron and the D-summation neuron make 

up the summation layer. The unweighted outputs of the pattern neurons are calculated by the 

D-summation neuron, while the S-summation neuron adds up the weighted outputs of the 

pattern layer. 

 

Finally, as shown mathematically in Equation (6), the output layer produces the required 

estimate, y(x), by dividing the output of the S-summation neuron by the output of the D-

summation neuron (Specht, 1991). 
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                                         Figure 5. GRNN Architecture 

 

𝑌(𝑥) =  
∑ 𝑤𝑖𝑘(𝑥, 𝑥𝑖)𝑛

𝑖=1

∑ 𝑘(𝑥, 𝑥𝑖)𝑛
𝑖=1

 

 

where Y(x) is the predicted value of input x, wi is the activation weight for the pattern layer 

neurons at i and 𝑘(𝑥, 𝑥𝑖) is the radial basis function kernel between input x and training 

samples, xi.  

In the case of a Gaussian kernel, k (x, xi) is given in Equation (7) as: 

𝑘(𝑥, 𝑥𝑖) =  𝑒
−𝑑2

2𝜎2  

where di= ‖x-xi‖ is the Euclidean distance between the training samples xi and the 

input x and σ is the spread parameter (Specht,1991). 

 

In the GRNN the spread parameter is significant in selecting the optimum GRNN model 

which influences the precision of prediction, hence, the optimal spread constant input was 29 

and 40 as the number of neurons. The parameter values of 0.1 to 1 with a step size of 0.01 

were investigated and the value that gave the best correlation coefficient and lowest MSE for 

both training and testing data sets was chosen as the optimum model. 

 

2.3.5 Group method of data handling  

For modeling non-linear, unstructured, and complicated systems, Ivakhnenko (1970) created 

the Group Method of Data Handling (GMDH) approach, a form of feed-forward neural 

network (Mofki et al., 2018). The method uses a multilayer network made up of many 

quadratic neurons organized in a certain pattern to translate a collection of input variables 

into matching target variables. The best network topology may be chosen via GMDH by 

automatically learning the underlying, complicated relations that control the system variables. 

Due to its ability to generalize well and suit the complexity of non-linear systems with a 

relatively easy-to-use and numerically stable network, the GMDH is a useful tool.  

 

The inductive self-organizing process utilized to create a multi-parametric model with 

workable variations is what distinguishes the GMDH technique from other approaches.  

Equation (12) of the Kolmogorov- Gabor polynomial, a multilayer network of second order, 

is used by GMDH to characterize the intricate nonlinear interactions between the system's 

inputs and outputs (Assaleh et al., 2013). 
 

𝑦̂ =  𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥2
𝑖 + 𝑎5𝑥2

𝑗 

 

where 𝑦̂ is the predicted output, a is the vector of the coefficient of the polynomial function, 

𝑥𝑖  and 𝑥𝑗  are the input variables.  

 

(7) 

(6) 

(8) 
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                                                       Figure 6: GMDH Architecture 

 

A GMDH architecture with five inputs and three layers and some selected and unselected 

neurons is shown in Figure 6. 
 

2.4 Model Prediction Performance 
 

The prediction accuracies of each of the predictive models for the Geodetic Point Velocities 

were analyzed using statistical performance indicators of Mean Square Error (MSE), Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE) and Coefficient of determination 

(R2). 

The following equations (Equations 9-12) present their mathematical notations: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑜𝑖 − 𝑝𝑖)

2

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)2𝑛

𝑖=1  

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝐼 − 𝑝𝑖|

𝑛
𝑖=1  

 

 

𝑅2 =
(∑ (𝑜𝑖 − 𝑜̅)𝑛

𝑖=1 (𝑝𝑖 − 𝑝̅))2

∑ (𝑜𝑖 − 𝑜̅)2𝑛
𝑖=1 𝑥 (𝑝𝑖 − 𝑝̅)2

 

 

where n is the total number of test samples, oi are the observed values, p are the predicted 𝑜 

values is the mean of the observed values and is the mean of the predicted values 𝑝.  

(9) 

(10) 

(11) 

(12) 
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An evaluation of the various prediction models was done by plotting the observed against the 

predicted with a 1:1 line, a 95% confidence interval (CI) (Equation (13)) and 95% prediction 

interval (PI) (Equation (14)).  

 

𝑃𝐼 = 𝑝𝑖 ± 𝑡(𝛼
2,𝑛−2⁄ )𝑆𝐷√1 +

1

𝑛
+

(𝑜𝑖 − 𝑜̅)2

∑(𝑜𝑖 − 𝑜̅)2
 

 

 

𝐶𝐼 = 𝑝̅ ± 𝑍𝛼
2⁄

𝜎

√𝑛
 

 

where 𝑝 is the mean of the predicted values, σ is the population standard deviation, Zα/2 is the 

Z value for the desired confidence level α and n is the number of predicted values. At a 95% 

Confidence Interval, Zα/2 = 1.96.  

𝑠 = √
∑(𝑂𝑖 − 𝑃𝑖)2

𝑛 − 2
 

 

where n is the total number of samples, Oi are the observed PPV values, Pi are the predicted 

PPV values, ō is the mean of the observed PPV values, t(α/2,n-2) is the α-level quartile of a t-

distribution with n – 2 degrees of freedom, SD is the standard deviation of the residuals. 

 

 

3.0 Results and Discussion  

   

3.1 AI Models used for the Prediction of Local Crust movement.  

 

In this study the 4 (Four) ANN models where used to in the training and testing for the 

prediction of the local crust movements in the direction X, Y AND Z.  

An optimum number of neurons were selected for the training. The data was divided into 2; 

One (80%) for the training and the second, (20%) for the testing of the prediction. 

The training was done based on the components of the data obtained from the 

GAMIT/GLOBK processing, i.e. Velocity X, Y and Z(mm). 

 

 

Table 2. BPNN Model Results 

 

(13) 

(15) 

(14) 
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They were then evaluated using some statistical indicators like the Root Mean Square Error 

(RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and Coefficient of 

determination (R2). 

To assess the performance of the model, 20% of the dataset, representing 208 points were 

used. The geocentric Cartesian coordinates (X, Y, Z) for the 208 points with their respective 

velocities (VX, VY and VZ) were known. The predicted values of the crustal velocities from 

the models were subsequently compared with the actual observed values. The differences 

between the observed velocities and the predicted values were computed for each model. The 

differences were computed by  

𝐸(𝑀𝑜𝑑𝑒𝑙) = 𝑉(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − 𝑉(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 

where E (Model) is the difference of the model being considered, V(observed) is the actual 

observations for velocities VX, VY and VZ and V(predicted) is the predicted model values for VX, 

VY and VZ. 

In this study, the parameters for the training of the BPNN model were a bit iterative in order 

to yield the best results. The architecture for the training of the ‘X’ velocity component varies 

from that of the ‘Y’ and ‘Z’. For the ‘X’, were three (3) inputs layers with fifty-three (53) 

neurons and one (1) output and an epoch of 5000. The training RMSE was 0.673599 and the 

testing RMSE was 1.330328. 

The velocity ‘Y’ has an architecture of three (3) input layers, six (6) hidden neurons and one 

(1) output layer. The training RMSE was 0.666693 and a testing RMSE of 0.992875. 
 

Table 3.  The GMDH Model Results 

 Training Testing 

Compt. RMSE MAE MSE R2 RMSE MAE MSE R2 

X 0.675233 0.491479 0.455939 0.069154 1.761623 0.464397 1.327261 0.004135 

Y 0.669445 0.554065 0.448157 0.416752 1.024159 0.867661 1.048902 0.214994 

Z 0.669445 0.012158 0.482209 0.427487 1.024159 1.075831 1.253964 0.298106 

 Training Testing 

Compt. RMSE MAE MSE R2 RMSE MAE MSE R2 

X 0.69985

1 

0.50769

5 

0.48979

1 

0.04586

8 

1.223258 1.027360  1.327261 0.202089 

Y 0.74199

3 

0.59720

0 

0.55055

5 

0.31836

3 

0.842400 0.694023 0.709637 4.10E-05 

Z 0.91772

4 

0.66846

1 

0.84221

8 

0.06406

1 

0.951927 0.894408 0.906165 4.35E-01 
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For the velocity ‘Z’, though same as the ‘Y’, with three (3) input layers, six (6) hidden 

neurons and one (1) output layer had a training RMSE of 0.674554 and a testing RMSE of 

0.989783.  

A table 5.1, 5.2, 5.3 and 5.5 shows the results of the various models during the training and 

testing. It indicates the RMSE, MAE, MSE ANS the R2 of the three (3) velocity components, 

VX, VY and VZ during the training and testing from the models. 

 

 

3.1.1 Results 
 

Backpropagation Neural Network Architecture  

The BPNN architecture used for this research consisted of three (3) layers, namely: the input 

layer, hidden layer and output layer. It is made up of five inputs with a hyperbolic tangent 

hidden layer transfer function and a linear output layer transfer function. The network was 

trained for 5000 epochs using the Bayesian Regularization Backpropagation algorithm with a 

learning rate of 0.05 and a momentum coefficient of 0.7. The optimum structure of the BPNN 

was [3 – 53 – 1] that is three inputs, fifty-three hidden neurons and one output. 

 

The RMSE of the BPNN is within the ranges of 0.669 to 0.675 for all three components Vx, 

Vy and Vz during the training but yielded the highest during the testing, ranging from 1.024 

to 1.762. 

It has the lowest coefficient of determination (R2) during the testing of the Vx component 

compared to the other statistical evaluators. 

The Mean Absolute Error also yielded the least value during the training, i.e. a value of 

0.0122 and also produced values from 0.867 to 1.076 during the testing for all three 

components. 

 

GMDH Neural Networks  

The GMDH model with the lowest MSE and highest R value was found to have three 

parameters in input layer, two hidden layers with three neurons and a single value as model 

target as output layer. The corresponding parametres for the GMDH for Geodetic Point 

Velocity prediction are shown in below:  

Table 3 shows the optimal training and testing results for the GMDH technique based on the 

4 statistical evaluators used;  RMSE ,MAE, MSE AND R2.  

 

In table 5.3 it can be noticed that the RMSE FOR THE GRNN training of all 3 variables were 

in the ranges of 0.655912 to 0.652352 but the Vz component in the prediction RMSE was 

1.599513. The R2 which was the least of all is the ranges of 0.128551 to 0.361591 with a 

MSE difference of 0.01 in all 3 variables. 

The RMSE of the Vz for the GRNN testing was 1.599513, approximately 0.61 differences 

from the Vx and Vy. 

The R2 were good for both the training and testing. The difference in result ranges from 0.00 

to 0.20 
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Table 4. The RBFNN Model Results 

 

 

For the RBFNN model for geodetic point velocity prediction, the width parameter value and 

the maximum number of neurons that gave the highest R2 and the lowest MSE was 0.324179 

and 0.43022061, respectively. 

Hence, the optimum RBFNN architecture selected for predicting geodetic point velocity has 

three inputs with forty hidden layer of neurons and one output layer, that is, [3–40–1]. Table 

5.4 presents the training and testing results based on the RMSE, MAE, MSE and R2 criteria. 

 
From Tables 5.1, 5.2, 5.3 and 5.4, it can be observed that, the various RBFNN and GRNN 

models have very close R2 values in the range, 0.00034 to 0.4439 and MSE values within the 

ranges 0.0005 to 1. 2520.  

These results confirm that the some of the models accurately predicted geodetic point 

velocities in some components, i.e. to say, some models were able to train and predict some 

specific components with high accuracy. For instance, looking at Table 5.3, the GRNN was 

good in predicting all three variables, Vx, Vy and Vz. Whereas the GMDH was only able to 

predict the Vx with high accuracy as compared to the other variables it predicted.  

This study assessed the capability AI techniques of BPNN, GMDH, RBFNN and GRNN as 

alternate predictive tool for Geodetic Point Velocity. The purpose was to determine whether 

those proposed these AI techniques could predict comparable and satisfactory geodetic point 

velocities. Considering the dimensioned error statistic indicators (MSE, RMSE, R2 and 

MAE), it was found that no AI technique actually produced the least MSE, RMSE R2 and 

MSE for all 3 components. Some models were good in training and predicting some 

components of velocities with high accuracies.  

The GRNN was the best among all the candidate models in terms of predicting the values for 

the Vx component of the training and testing. 

 

 Training Testing 

Compt RMSE MAE MSE R2 RMSE MAE MSE R2 

X 0.65591 0.46439 0.42684 0.128551 0.98862 0.97760 1.617353 0.000897 

Y 0.65591 0.53455 0.43022 0.440096 0.98862 0.80074 0.982079 0.124335 

Z 0.65235 0.47778 0.42293 0.361591 1.59951 1.44409 2.570742 0.324179 
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This was however, closely followed by the GRNN and RBFNN approach. These results 

indicate that comparatively, the GRNN was able to learn well and was able to predict the Vy 

components. And the RBFNN was good to produce the least values for the Vy components 

during the training and predictions. 

This is in line with the rule of thumb that, the closer the values of MSE, RMSE R2 and MAE 

are to zero, the better the prediction capability of the model.  
 

 

 

 

 

 

Table 5.  The GRNN Model Results 
 Training Testing 

Compt. RMSE MAE MSE R2 RMSE MAE MSE R2 

X 0.655912 0.464397 0.000334 0.128551 0.988625 0.977609 0.855997 0.000897 

Y 0.655912 0.534559 0.534559 0.440096 0.892702 0.800749 0.796918 0.124335 

Z 0.652352 0.477789 0.534559 0.361591 0.791420 1.4440930 0.626345 0.324179 

 

However, a careful study of Table 5 indicates that comparatively, the GMDH technique was 

better, and it performed fairly well because its MSE, RMSE, R2 and MAE results deviated 

only marginally as compared to the other models considered in this research. Undoubtedly, it 

can be stated that GMDH ANN model can yield a very comparable and closely related 

geodetic point velocity prediction results. In comparison to the other candidate models, the 

GMDH model outperformed the rest. On the contrary, the BPNN model was able to learn and 

generalize well during the training but could not produce acceptable results across the entire 

testing dataset. A pictorial view of the predictive strength of the models can additionally be 

viewed in Figures 5.2, 5.3, 5.4 and 5.5. The R2 results presented in Table 5.1, 5.2, 5.3 and 5.4 

provide quantitative evidence on how dependent the predicted geodetic point velocity values 

are from the actual observations. With reference to Table 5.1, it can be seen that the BPNN 

had high RMSE and MSE values during the training than the testing. This means that the 

model performed well in the sample but has little predictive value when tested out of the 

sample. However, it can be observed that the RBFNN results for Vz had the highest R2 value 

of 0.324179. The other models (BPNN, GMDH and GRNN) could produce comparable 

results as their R2 values were marginally different from that of the GMDH model which 

ranges between the ranges of 0.002 to 0.298.  

 

Based on the results obtained it was found out that the GMDH model outperformed the rest 

of the models followed by the GRNN which produced comparable and satisfactory results. 

Hence GMDH technique is proposed to be suitable tool to predict geodetic point velocities. 

The RMSE, MSE, MAE and R2 statistical techniques were used as a models performance tool 

to appraise the models. They were used in this study to analyze the results of the predictions 
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and to select the best model among the candidate models applied. When these techniques are 

applied, the best results starts from 0 to infinity with 0 being the best value, hence the model 

with that smallest value is the preferred model. The resultant values (Table 5.1, 5.2, 5.3 and 

5.4) showed that the GMDH model had a better capability of producing reliable results than 

the other investigated models. This is because, among the methods, the GMDH had the least 

statistical values (Table 5.1, 5.2, 5.3 and 5.4) and thus was selected as the best technique over 

the other AI methods. The obtained results also revealed that the other AI models (RBFNN, 

GRNN and BPNN) produced comparable and satisfactory prediction results in some 

components of the geodetic point velocities. This affirms the assertion made that; the other 

AI models can suitably be used to predict geodetic point velocities. 

Therefore, on the basis of these statistical analyses presented in this study, it can be stated 

categorically that the potential of AI models in predicting geodetic point velocities for the 

southern part of Ghana has been duly investigated. 

 

 

 

4.0 CONCLUSIONS AND RECOMMENDATIONS  

  

4.1 CONCLUSION 
 

Under investigation in this study is the prediction of Geodetic Point Velocities in the southern 

part of Ghana using four (4) AI techniques. In this case four models AI techniques of GRNN, 

RBFNN, GMDH and BPNN have been proposed and tested as alternative tool that can be 

adapted for prediction of Geodetic Point Velocities. To provide a comprehensive 

performance evaluation of these techniques, four statistical evaluation methods namely 

RMSE, MAE, MSE and R2 were used to access the suitability of the proposed models. To 

achieve this aim, a total of 1070 RINEX3.0 format data points were acquired from LISAG 

CORS with their velocities. These data sets were then processed using Trimble Geomatic 

Office for their natural coordinates and onward processing with GAMIT/GLOBK to derive 

their respective station velocities. The data were then used to run the various predictive 

models in MATLAB.  

 

The 1070 points were then dived into 2 datasets, 80% and 20%; 80% for training and the 

remaining 20% for the independent testing of the model.  

To run the AI models, the number of points, velocities Vx, Vy and Vz with their respective 

coordinates Xm, Ym and Zm were used as the input parameters while the geodetic point 

velocity values were used as the output parameter. Statistical performance criteria of Mean 

Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and 

Coefficient of determination (R2) were used as the basis for evaluating the performance of the 

techniques employed in this study. These statistical approaches were used to in selecting the 

best model among the candidate models in this study.  

 

Based on the statistical results obtained, it was found out that three out of the four proposed 

AI techniques (GRNN, RBFNN, BPNN and GMDH) could produce sound geodetic point 

velocity predictions. Hence the GMDH was proposed to be used as suitable to predict 
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geodetic point velocity. This was selected based on the statistical approach for the evaluation 

of the prediction of the geodetic point velocities. 

Therefore, the GMDH model could be used as a means of forecasting geodetic point 

velocities and can be applied in the field of geodesy or related fields were GPV is needed to 

understanding the issues of the earth and its seismicity.  

To this end, it is clear that the computational adaptive strategy of the AI techniques applied in 

this research enabled the correct calibration and generalization to the data set.  

 

4.2 Recommendations 

From results obtained from this project, it is recommended that: 

i. These AI techniques in predicting GPV should be adopted by Geoscientists in forecasting 

seismic activities of the earth and its related fields where applicable. This is in line with 

the Sustainable Development Goal Eleven (11) which aims at making cities and human 

settlements inclusive, safe, resilient and sustainable. 

ii. A research is taken to cover the whole of the country or continent to determine the extent 

of crust movement by increasing the number of CORS.  

iii. Different datasets be utilized to evaluate the influence of point density on the geodetic 

point velocity prediction outcomes. In this project, the candidate models provided 

reasonable predictions, so it can be an alternative tool for predicting the geodetic point 

velocities. 

iv. The prediction of accurate local Geodetic Point Velocities needs to be further researched 

and discussed. A hybrid model of these when researched, will not be farfetched to 

determine its contribution to the accuracy factor when predicting. 
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